Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A А

|--|

Q.No.		Questions	Marks	CO	KL
1.	a)	What is a decision table?		1	2
	b)	What is All Uses Strategy (AU) in data flow testing?		2	2
	c)	State HUANG's Theorem		3	1
	d)	Define a state in the context of state graph.	[2M]	4	1
	e)	What is matrix of a graph?	[2M]	5	2

PART-B Answer One Question from each UNIT (5X10=50M)

Q.N	lo. Questions	Marks	CO	KL			
UNIT-I							
2.	Illustrate equivalence class testing with suitable examples.	[10M]	1	3			
OR							
3.	Discuss the model for testing with a neat diagram.		1	2			
UNIT-II							
4.	Explain the path sensitizing and heuristic procedures.	[10M]	2	2			
	OR						
5.	Explain the following in detail:	[10M]	2	2			
	i. Data flow testing						
	11. Data flow machines						
UNIT-III							
6.	Demonstrate the reduction procedure with suitable example.	[10M]	3	3			
OR							
7.	Illustrate the method to solve generic flow-anomaly detection problem with suitable example.	[10M]	3	3			
UNIT-IV							
8.	What are KV charts? How they can be used to reduce expressions? Explain with example.	[10M]	4	3			
	OR						
9.	What is a state graph? How they can be used in transition testing? Illustrate with suitable example.	[10M]	4	3			
UNIT-V							

Cod							
10.		Explain t	he following relations:	[10M]	5	2	
		i.	Transitive				
		ii.	Reflexive				
		iii.	Symmetric				
		iv.	Anti-symmetric				
		v.	Equivalence				
OR							
11.		Describe	the test data generation using Generic Algorithm.	[10M]	5	2	
